- Given that, $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -1 & 1 \\ 2 & 1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, find, where possible: T)
 - (i) A+B

- (v) AB
- (ii) A+C (vi) AC
- (iii) *C+D* (vii) *A'C'*
 - (iv) CA (viii) C^{-1}
- Find the set of all 2x2 matrices X such that $X^2 = 0$. Give one example. 2)
- Use elementary row operations to find the inverse of the matrix $\begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 2 \end{pmatrix}$ and hence solve the 3) equations:
 - X Y + Z = 1
 - x + y + 2z = 0
 - 2x v + 3z = 2
- If $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$, show that the most general 2x2 matrix X such that AX = XB is of the form $\begin{pmatrix} x & y \\ y & -y \end{pmatrix}$. Hence, find a 2x2 matrix P such that $P^{+}AP = B$ and $P^{+}P = I$, where I is the unit 2x2 matrix.
- 5) What transformations are represented by the following matrices? Illustrate each transformation by means of an example.

(i)
$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
 (ii) $\begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix}$ (iii) $\begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$ (iv) $\begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix}$ (v) $\begin{pmatrix} -\sin\alpha & -\cos\alpha \\ \cos\alpha & \sin\alpha \end{pmatrix}$

6)

$$\begin{vmatrix} 2-x & -3 & 5 \\ 0 & 5-x & 2 \\ 8 & -6 & 8-x \end{vmatrix} = 0$$